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Abstract

Simulated land use/land cover change (LULCC) radiative forcings (RF) from changes
in surface albedo (∆α) predicted by land surface schemes of six leading climate
models were compared to those based on daily MODIS retrievals for three regions
in Norway and for three winter–spring seasons. As expected, the magnitude and5

sign of the albedo biases varied considerably for forests; unexpectedly, however,
biases of equal magnitude were evident in predictions at open area sites. The latter
were mostly positive and exacerbated the strength of vegetation masking effects and
hence the simulated LULCC ∆α RF. RF bias was considerably small across models
(−0.08±0.04 Wm−2; 21±11%); 4 of 6 models had normalized mean absolute errors10

less than 20 % (3-year regional mean). Identifying systematic sources of the albedo
prediction biases proved challenging, although for some schemes clear sources were
identified. Our study should provide some reassurance that model improvement efforts
of recent years are leading to enhanced LULCC climate predictions.

1 Introduction15

Albedo change radiative perturbations due to land use and land cover change (LULCC)
have long been considered some of the strongest climate forcing mechanisms at global
and regional scales (Cess, 1978; Otterman, 1977), yet results from recent historical
LULCC modeling studies reveal an order or magnitude spread in the temperature
response from albedo change forcings (Brovkin et al., 2006; Lawrence et al., 2012;20

Pongratz et al., 2010). This is likely because, in regions and months with snow
cover, the interactions between vegetation and snow significantly complicate the
relationship between the change in forest cover fraction and surface albedo (αs) (de
Noblet-Ducoudré et al., 2012). Outcomes of model inter-comparison studies (LUCID)
employing identical LULCC prescriptions suggest that, apart from the way individual25

land surface models (LSMs) implement LULCC in their own land cover map (i.e.,
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differences in biogeography), model differences in the way αs is parameterized could
be a significant source of this spread (de Noblet-Ducoudré et al., 2012; Pitman
et al., 2009). Recent attributional analysis by Boisier et al. (2012) suggests that the
contribution from the latter is indeed comparable to the former and worthy of further
investigation, particularly given the importance of albedo radiative feedbacks when5

ground or canopy surfaces are covered in snow (Crook and Forster, 2014; Hall and
Qu, 2006).

Simulated αs over snow-covered forests by climate models is often biased high
(Essery, 2013; Loranty et al., 2014; Roesch, 2006). While most climate models
distinguish between snow intercepted in forest canopies and snow on the ground,10

many differ in how they parameterize the fractions of ground and canopy that
are covered with snow for given masses of lying and intercepted snow (Essery,
2013; Qu and Hall, 2007). This is likely because, rather than trying to simulate the
complex processes of canopy snow interception and unloading as is done by many
sophisticated, physically-based snow models (Essery et al., 2013, 2009) – many15

climate models must employ simplified parameterizations to reduce computational
demands. In their assessment of αs feedbacks simulated by 14 CMIP5 models, Qu
and Hall (2014) find the largest intermodal spread in αs occurring in northern latitude
regions and suspect it to be behind the differences in the large range of local feedbacks.
As with their previous inter-comparison analysis (Qu and Hall, 2007), Qu and Hall20

(2014) assert that parameterizations of snow masking in many CMIP5 models may
still require improvement, suggesting further that winter observations over heavily
vegetated surfaces such as the boreal forest should be used to constrain modeled
αs because of the vastly different parameterizations employed in the CMIP5 models for
vegetation snow masking.25

We hypothesize that parameterizations of snow masking by vegetation can be
refined and improved in many climate models and that local calibration with
empirical observation can enhance prediction accuracy. To this end, we evaluate αs
parameterization schemes of six prominent climate models in greater detail in order
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to pinpoint major sources of bias and inter-model variability. Using a comprehensive
empirical dataset of forest structure, meteorology, and daily MODIS αs retrievals
spanning three winter-spring seasons in three case regions of boreal Norway, we
then estimate ∆αs radiative forcings connected to simulated forest cover changes
(LULCC) and compare it to the MODIS-based forcings. We then develop a physically-5

based regression model and compare its performance to existing model schemes,
concluding with a discussion surrounding the efforts required to improve albedo
prediction accuracy in climate models.

2 Material and methods

We employed Version 006 (v006) MCD43A 1 day daily Albedo/BRDF product (Wang10

and Schaaf, 2013; Wang et al., 2012), taking the direct beam (“black-sky”) αs at
local solar noon for the winter–spring seasons spanning 1 January 2007 through
9 May 2009. The v006 product uses multiple clear sky views available over a 16 day
period to provide daily αs values that represent the best BRDF possible with the day
of interest emphasized. This includes as many overpasses that are available per day15

(while earlier versions of the algorithm, including the Direct Broadcast version, were
limited to only 4 observations per day; Shuai, 2010), enabling it to better capture the
daily albedo with an algorithm that more strongly emphasizes all contributions from the
single day of interest (Wright et al., 2014).

Structural attributes like leaf area index (LAI), canopy height, and canopy cover20

fraction were derived from regional aerial LIght Detection and Ranging (LIDAR)
campaigns undertaken in June of 2009 following Solberg et al. (2009). Daily
meteorological observations of mean and maximum wind speed (ms−1), mean and
maximum near-surface temperature (◦C), snow depth (cm), and precipitation (mm)
were taken from measuring stations in the municipalities of Drevsjø (675 m), Flisa25

(200 m), and Rena (250 m) located in eastern Norway in the county of Hedmark (Fig. S1
in the Supplement) (Norwegian Meteorological Institute, 2013). All three sub-regions
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lie in Köppen–Geiger climate zone “Dsc” (boreal) but experience variations in snow fall
amount and frequency and the temporal extent of the snow cover season (additional
meteorological information may be found in the Supplement and Fig. S2).

Local forest management plans were used to identify forest stands of pure (> 95 %
volume, m3 ha−1) evergreen needleleaf forest cover within a ∼ 5 km radius and ∼ 50 m5

altitude range of a weather monitoring station. Evergreen needleleaf species in the
region included Scots Pine (Pinus sylvestris L.) and Norway Spruce (Picea abies (L.)
H. Karst.). 12 open area sites within the same 5 km proximity to a weather station were
selected in order to simulate forcings associated with regional LULCC (forest to open).
In total, 250 forested MODIS pixels (approximately 5300 ha) and 12 open area pixels10

(8 cropland, 4 wetland/peatland) were included in the sample (Fig. S1).

2.1 Albedo parameterizations in climate models

The particular land surface models chosen for analysis (Table 1) were selected
because they are widely employed in climate/earth system models and because their
αs schemes are diverse with respect to the parameterization of ground masking by15

vegetation, which can be classified according to three prevailing methods introduced
in Qu and Hall (2007) (and later described in Essery, 2013). Briefly, the first method
estimates radiative transfer between the vegetation canopy and the ground surface; the
second method combines the vegetation and ground albedos with weights determined
by vegetation cover; and the third method combines the snow-free and snow albedo20

with weights determined by snow cover. Varying degrees of model complexity stem
from the way snow albedo metamorphosis effects are parameterized and the way
vegetation structure is utilized (Sect. S3 in the Supplement).

2.2 Regression modeling

Non-linear multiple regressions are performed using the forest structure and25

meteorological observations as predictor variables. The functional form of the models
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are adapted from several important physically-based parameterizations found in many
current albedo schemes. Equation (1) is the best performing model:

αs = k1 +k2(1−e−LAI)+k3 tanh(d/k4)
(
e−k5(LAI) +

[
1− 1

1+e−k6TMax

])
(1)

where LAI, d , and TMax are leaf area index, snow depth, and maximum daily (24 h)
temperature, respectively. k1 is the ground albedo (directional hemispherical) without5

the forest canopy scaled by a canopy radiative fraction term (1−e−LAI) and the
parameter k2, with k2 representing the maximum albedo difference at the highest
observed LAI values. See the Supplement (Sect. S4) for a detailed overview and
description of the regression model and its theoretical underpinnings, its parameters
(Table S6), and its performance statistics (Table S6).10

2.3 Radiative forcing

Top-of-atmosphere (TOA) radiative forcing simulations for the conversion of evergreen
needleleaf forest to open land (∆αs, Open−Forest) is computed using a 3-D four
spectral band, eight-stream radiative transfer model (Myhre et al., 2007) based on
the discrete ordinate method (Stamnes et al., 1988). The model is run with a 3 h15

time step with a horizontal resolution of 1◦ ×1◦ and a vertical resolution of 40 layers.
Meteorological data from the ECMWF is used in the radiative transfer simulations and
several atmospheric aerosol types are included in the model (Myhre et al., 2007).
Regional RF from LULCC is estimated by changing the monthly mean αs of the entire
grid cell and normalizing to the share of existing cropland contained within each grid20

cell.
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3 Results

3.1 Albedo

When looking at regional averages in predicted αs presented in Fig. 1, no single model
apart from the regression model (“REG”) performed consistently well across all months
at both Forest and Open sites and for both spectral bands. Starting with the NIR5

band (Fig. 1, left column), JSBACH showed clear positive biases at both Open and
Forest sites for most months. Positive biases in GISS II were more prevalent for Forest
although positive biases were also found at Open sites for months with partial snow
cover (November, April, May). Large positive biases for the JULES 2-stream (“JUL-2”)
scheme were limited to Forest and to winter months of January, February, and March.10

With the exception of February, slight negative biases by JUL-2 at the Open sites
were found in all months except February; this was true also for the JULES All-band
scheme (“JUL-AB”) with the exception of March. The largest difference between the
two JULES schemes occurred for Forest, where JUL-AB consistently underpredicted
αs in all months except May. Large negative biases in Forest by CLASS were found in15

November and January with smaller negative biases in February.
Moving on to the VIS band (Fig. 1, right column), most schemes overpredicted αs

during winter months (January–March) at the Open sites. The largest spread (i.e.,
standard deviation, SD) at the Open sites occurred during November (SD = 0.08),
where the largest negative bias was found for CLM4 and positive bias for JSBACH.20

Like in the NIR band, results varied more at the Forest sites where biases across
months were more evenly distributed around zero (r = 1). Again, here we found positive
biases by JUL-2 yet negative biases by JUL-AB during January–April Positive biases
by JSBACH were mostly confined to November, January, and February at both Open
and Forest sites. Unlike the NIR band in which positive biases at Open sites by GISS II25

were limited to November, April, and May – for the VIS band positive biases occurred
in all months; however, the positive biases in Forests seen for the NIR band during
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November, February, and April were reduced. Like the NIR band, large negative biases
were found for CLASS for November, January, and February.

In general, Fig. 1 shows that the inter-model spread was smaller for the VIS band
predictions relative to NIR, and at Open sits relative to Forest sites. Figure 1 also
indicates that the inter-model spread in αs predictions for both bands and land cover5

types was larger during November–February and smaller during March–May. With the
exception of JUL-2 in the NIR band, all models overpredicted November–May mean
∆αs (Fig. 1e and f, “Open−Forest”) in both spectral bands. Models with negative αs
biases at Forest sites and positive αs biases at Open sites – such as CLASS and JUL-
AB – led to some of the largest positive ∆αs biases. For some schemes like GISS II and10

JSBACH, positive αs biases at both Open and Forest sites offset each other resulting
in low ∆αs biases, particularly in the NIR band. Only for the NIR band (Fig. 1e) did any
model underpredict ∆αs. Here, JUL-2 under- and overpredicted αs at Forest and Open
sites, respectively.

Monthly αs biases were often reduced when weighted by the relative share of15

monthly insolation during November–May, as seen in Fig. 1 particularly for the JSBACH
and CLASS schemes, which suggests that a large share of the bias occurred during
winter months.

3.2 Radiative forcing

November–May mean (2007–2009) TOA RF from simulated LULCC (∆α, Open−20

Forest) are presented in Fig. 2a for each of the three case study regions. In Rena
and Drevsjø, all models overpredicted ∆αs and thus simulated LULCC RF. No clear
patterns emerged regarding relationships between RF error, model, and study region;
RF errors by REG, CLM4, and CLASS were larger in Rena (green bars) relative to
Drevsjø (red bars) – while RF errors were larger for the JULES models, JSBACH, and25

GISS II for Drevsjø relative to Rena. One would expect a larger spread in the modeled
RF for Drevsjø given the larger inherent variability in vegetation structure in the forest
sample (Table S1) and given the fundamental differences in the way each albedo
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scheme handles vegetation structure (Sec. S3), yet we found the largest inter-model
spread occurring in Rena (RF SD = 0.075), where the normalized mean errors (NME)
ranged from 6–58 % for JSBACH and CLASS, respectively (Fig. 2b, green right-hand
y axis). For Drevsjø, the inter-model spread was smaller (RF SD = 0.067), with RF NME
ranging from 14–54 % for CLM4 and JUL-AB respectively. One possible explanation is5

that Rena experienced more frequent precipitation events, more fluctuating maximum
daily temperature (above and below freezing), and a snowpack that tended to melt
more rapidly in early spring than in Drevsjø (Fig. S2) – all of which complicated the
prediction of ground and forest canopy αs in the presence of snow.

The inter-model spread was lowest in Flisa (RF SD = 0.05), with RF NME ranging10

from 2 % for the Regression model and 22 % for CLASS, respectively. In Flisa, JSBACH
and JUL-AB underestimated the strength of the vegetation masking effect (∆αs bias)
and thus the simulated LULCC RF. Together with CLASS, these two schemes also
led to some of the largest RF spreads across sub-regions by any single model, where
RF NME for JUL-AB ranged 10–54 % for Flisa and Drevsjø, respectively; for CLASS15

22–58 % for Flisa and Rena, respectively; and for JSBACH from 6–32 % for Flisa and
Drevsjø, respectively.

For JSBACH, the result of having both positive and negative ∆αs biases is a regional
mean RF (Fig. 2a, grey bar) that most closely resembled the MODIS based RF; with
MAE (or NME) as a metric, however, JSBACH only ranked 3rd of 7 (Fig. 2b, top).20

Although not ranked 1st in all sub-regions, REG led to the most accurate regional
mean RF prediction (MAE/NME, Fig. 2b, grey).

It is worth reiterating that some schemes such as that of GISS II severely
overpredicted αs at both Open and Forest sites (Table 3) which was not reflected in
∆αs or ∆αs RF, thereby giving the impression that the scheme ranked relatively high in25

accuracy.
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4 Discussion

We hypothesized that climate model parameterizations of vegetation masking effects
on surface albedo in boreal winter and spring could be further refined and improved
in land surface models to increase prediction accuracy, although it is evident from our
analysis that – for evergreen needleleaf forests – most of the existing schemes already5

do a reasonably good job at predicting αs in the presence of snow, leaving little room
for improvement. Given the multitude of vegetation structural, meteorological, and other
site-specific physical factors involved in shaping the total αs of the forest canopy and
underlying surface, normalized mean absolute prediction error (NME) of < 20 % in our
∆αs RF simulations is considered a remarkably high accuracy for climate models that10

must depend on reduced complexity schemes (relative to 3-D radiative transfer models
or sophisticated snow-ice physics models).

A surprising finding of our study is that parameterizations of Open area αs – which is
governed mostly by the albedo of snow from January through early April – contributed
as much to ∆αs prediction error as that of Forests (Fig. 1). The bias was mostly positive15

although there is some evidence that MODIS may underestimate the albedo of cold
dry snow (Jin et al., 2002; Stroeve et al., 2005; Wang and Zender, 2010) – particularly
in VIS bands (Wang and Zender, 2010). Jin et al. (2002), for example, assert that
there may be up to a 10 % negative bias in the MODIS pure dry snow albedo (Jin
et al., 2002), which could partially explain why most models in our study tended to20

overestimate αs during the coldest months of January and February (Fig. 1). Factoring
in any potential negative MODIS snow αs bias would reduce some of the positive open
area biases (Fig. 1; Supplement) but not all of it, particularly for CLASS and JSBACH,
whose positive open area αs biases were particularly large during months with snow
cover. Snow αs was reset to a maximum after a fresh snowfall event (Tables S3 and25

S4); however, MODIS albedo retrievals were far below the prescribed maximum snow
albedo values of these two schemes after fresh snowfall events (Figs. S24–S26 for
JSBACH and Figs. S30–S32 for CLASS), particularly for the VIS band.
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The two schemes with regional mean RF NMEs (Fig. 2b) above 20 % were the
CLASS and JUL-AB schemes. For CLASS, RF NME > 20 % was realized for all three
sub-regions. The ∆αs RF bias of CLASS was due to overpredictions at open area
sites and underpredictions at forested sites. The latter is due to the parameterization
of canopy transmittance that is based on an extinction coefficient that incorporates5

a correction factor of 0.3 and 0.4 for NIR and VIS bands, respectively (Eqs. S10 and
S11 in the Supplement). Lowering these to 0.25 and 0.3 for NIR and VIS bands,
respectively, serves to reduce the negative biases in forests, particularly at high solar
zenith angles (November–February). As aforementioned, at the open sites the VIS
albedo constant of 0.95 for fresh snow was too high; the maximum observed VIS10

albedo after a fresh snowfall event was 0.88 (all study regions), and adjusting to 0.90
would alleviate some of this bias (disregarding potential MODIS biases).

Although JUL-AB (formerly MOSES v. 2.2) ranked 6th/7 overall when considering
only the regional mean RF MAE and NME (Table 4), in two of the three study regions
(Flisa and Rena) it performed quite well, with RF NMEs of < 11 % and < 16 % for Flisa15

and Rena, respectively. The large RF NME for Drevsjø was a result of a severe negative
bias in the predicted αs of forests (Fig. S11), which resulted in large positive ∆αs
biases (Table S3). The explanation is due to the use of vegetation-specific snow albedo
parameters that were too low for forests in this region – forests that were characterized
as having the lowest median tree heights, LAIs, and canopy cover fractions out of the20

three forested sub-regions (Table S1).
Of the existing land model schemes included in this study, JUL-2 performed best

in the LULCC RF simulations (Fig. 2), although we note that it underestimated the
strength of the vegetation masking effect (∆αs) in the NIR band while overestimating it
in the VIS band (Fig. 1) (consistent across all three study regions, Table S3) which may25

have had offsetting effects in the RF simulations. A closer inspection of the daily αs
time series (Sect. S5.2) hints that forest albedo (Figs. S15–S17) may be too sensitive
to snow depth (Fig. S2) – an important variable in the parameterization of snow cover
fraction (Eq. S2). For example, αs predictions were biased positive at snow depths
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above 0.6 m (typical in Rena and Drevsjø during the winter-spring of 2008 and 2009)
while biased negative at Flisa during 2007 and 2008 for which snow depths never
exceeded 0.4 m. This same sensitivity of forest αs on snow depth was also found for
the GISS II scheme – another Type 3 scheme – resulting in positive αs biases in forests.
This sensitivity to snow depth was not evident for JUL-AB – the third Type 3 scheme.5

This is because, unlike GISS II and JUL-2, snow albedo is vegetation-dependent and
constrained by satellite observation (MODIS).

In agreement with findings in Essery (2013), we generally find that no single type of
scheme (as described in Sect. 2.1 and in Qu and Hall, 2007) stood out as performing
better or worse relative to the others. In their latest CMIP5 simulations, Qu and Hall10

(2014) assert that type 2 schemes – or those which parameterize albedo as a function
of vegetation cover rather than snow cover – generally tended to overestimate the
strength of the snow albedo masking effect (∆αs) due to negative biases in forest αs
predictions. For JSBACH – a Type 2 scheme – we did not detect this bias; rather, we
found positive biases in Forest in both bands, particularly during the snow season which15

is consistent with findings of Brovkin et al. (2013) and Hagemann et al. (2013). NIR
albedo predictions in Flisa and Rena during snow-free periods were also biased high
(figures in Sect. S5.4) resulting in underestimations of NIR ∆αs, which we attributed
to a snow-free vegetation albedo constant that was too high (Table S4). The positive
RF bias seen at Drevsjø (Fig. 2) stemmed from negative biases in the springtime20

(March–May) VIS αs in forests (Fig. S29). This may be attributed to the default use
of 1 as the stem area index (SAI) used in the masking parameterization (Reick et al.,
2012); observational evidence suggests this may be too high in boreal regions in spring
(Lawrence and Chase, 2007).

While the simulated ∆αs RF by GISS II appeared relatively robust (Fig. 2), αs25

predictions in Forest and Open were strongly positively biased in both spectral bands.
In forests, this could be attributed to two main factors: (i) a dependence on snow-free
albedo constants that were too high, particularly when applied at the denser (i.e., high
CC%, Table S1) sites of Flisa and Rena, (ii) a strong dependency on snow depth and/or
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lack of explicit representation of forest structure in the masking expression which led to
overpredictions in Rena and Drevsjø (Figs. S40 and S41) – regions that experienced
snow depths greater than 60 cm for much of the winter and early spring in 2008 and
2009 (March–late April). NIR biases at the open sites (Figs. S36–S38) were attributed
to the use of snow-free vegetation constants that were too high (Table S5).5

Sources of RF biases in CLM4 were harder to discern, as the sign of the predicted
∆αs bias was not consistent across study sites and months. ∆αs bias was negative
and mostly limited to March and April at Flisa and Rena (Table S3). ∆αs bias was
positive at Drevsjø and occurred mostly in April and May due to overpredictions in both
NIR and VIS αs in Forest and underpredictions in both NIR and VIS αs at Open sites10

(Figs. S18–S23).
Not surprisingly, the purely empirical αs model presented here (Eq. 1) calibrated

with local forest structure and meteorological observations performed best on average
throughout the region (i.e., Fig. 2; MAE, NME, and Rank). However, to our surprise,
it did not rank first in all study regions; it ranked 5th in Rena which was the region15

having the fewest forest structure, meteorological, and MODIS albedo retrievals. This
highlights the high performance dependencies of purely empirically-based models
to the underlying datasets to which they are calibrated. Although it is tempting to
recommend its application over existing modeling schemes in boreal regions, rigorous
evaluation efforts would be needed to assess the degree of transportability and20

reliability when applied in other regions having different forest structures and climate
regimes (Bright et al., 2014).

5 Conclusions

Simulated seasonal LULCC radiative forcings (RF) from changes in land surface
albedo (∆αs) predicted by six of the world’s leading climate models were evaluated25

using observed meteorology and forest structure for a case region in Norway and
by comparing to MODIS daily albedo retrievals. Compared to RF simulations based
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on MODIS albedo, all six models plus an additional empirical model developed
here overestimated the magnitude of the simulated regional mean RF (Fig. 2) by
overestimating ∆αs (Fig. 1), although results varied between three sub-regions within
the broader case study region. For instance, in a sub-region characterized as having
the highest forest productivity and lowest seasonal snow cover of the three (Flisa), two5

of the models underestimated ∆αs RF (JSBACH and JULES All-band).
Efforts to uncover sources of systematic albedo biases proved challenging as no

clear discernible patterns could be detected across study regions or between the
different types of schemes (Sect. 2.1), although some systematic sources of bias
in forest αs were identified for the CLASS, JULES All-band, JSBACH, and GISS10

II schemes. Severe negative albedo bias in winter months by CLASS – evident
across all three study regions – was attributed to the parameterization of canopy
transmittance. For GISS II, persistent positive αs biases were linked to snow-free
vegetation albedos (both VIS and NIR bands) that were too high and to a snow
cover masking parameterization that did not explicitly account for differences in forest15

structure. Biases in forests in the JULES All-band scheme can be easily alleviated
by adjusting (in our case increasing) the vegetation-dependent snow albedo values for
“Evergreen Needleleaf” forest, which, in our study, were based on MODIS latitude band
averages (Gao et al., 2005). Similarly for JSBACH, forest biases can be easily reduced
by lowering the snow-free vegetation albedo value in the NIR band.20

Nevertheless, given the complexities involved in parameterzing the albedo of forests
in boreal winter and spring (in the presence of snow), given the diversity of climate
regimes and forest structure types that models must be designed to accommodate,
and given the reduced complexity requirements of albedo parameterizations by global
climate models – our study should give some reassurance to climate modelers that25

recent efforts to improved parameterizations of vegetation masking effects are leading
to more accurate predictions of surface albedo and hence climate change predictions
linked to LULCC.
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The Supplement related to this article is available online at
doi:10.5194/bgd-11-17339-2014-supplement.
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Table 1. Land models included in the study.

Land model Climate model Snow Vegetation Forest Technical Other
(αs scheme) albedo masking structure documentation supporting

effectb references

CLASS CGCM4; prognostic type 2 yes Verseghy (2009) Verseghy et al. (1993)
CanCM4 procedure

CLM4.0 NCAR CCSM4; prognostic type 1 yes Oleson et al. (2010) Dickinson (1983),
NCAR CESM; procedure Flanner and Zender (2006),
Nor-ESM Sellers (1985)

GISS II GISS GCM II; prognostic type 3 no Hansen et al. (1983) Matthews (1984)
GISS GCM ModelE procedure

JULESa UKMO HadGEM2 prognostic type 3 yes Best (2009) Marshall (1989),
(2-stream) procedure Sellers (1985),

Wiscombe and Warren (1980)

JULESa UKMO HadCM3 diagnostic type 3 yes Best (2009) Essery et al. (2001)
(all-band) procedure

JSBACH MPI-ESM diagnostic type 2 yes Reick et al. (2012) Otto et al. (2011)
procedure

a Formerly MOSES.
b Classification based on Qu and Hall (2007).
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Figure 1. (a–d) Correlations between the observed (MCD43A, y axes) and modeled (x axes)
direct-beam albedo (monthly means, 2007–2009) in evergreen needleleaf forests (a, b) and
adjacent open areas (c, d) for both near-infrared (left column, “NIR”) and visible bands (right
column, “VIS”) averaged across all three study regions; (e) NIR and (f) VIS November–May
mean bias (regional and monthly means, 2007–2009) and insolation-weighted mean bias.
High solar zenith angles inhibited the number of sufficient MODIS retrievals in December, thus

December mean biases were excluded from the November–May mean; MB = 1
N

N∑
i=1

(αModel −

αObs.).
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Figure 2. (a) Radiative forcing (RF) from simulated vs. observed (MCD43A) albedo changes
(Open–Forest), 2007–2009 November–May mean (excluding December). The lower x axis
shows the difference between Open and Forest, whereas the upper x axis show RF values
weighted by the cropland fraction (same for all regions); (b) mean absolute error (MAE),
normalized mean absolute error (NME), and model rank, 2007–2009 November–May mean;

MAE = 1
N

N∑
i=1
|RFModel −RFObs.|; NME =

N∑
i=1
|RFModel −RFObs.|(

N∑
i=1

RFObs.)
−1.
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